29,596 research outputs found

    Multichannel charge Kondo effect and non-Fermi liquid fixed points in conventional and topological superconductor islands

    Full text link
    We study multiterminal Majorana and conventional superconducting islands in the vicinity of the charge degeneracy point using bosonization and numerical renormalization group. Both models map to the multichannel charge Kondo problem, but for noninteracting normal leads they flow to different non-Fermi liquid fixed points at low temperatures. We compare and contrast both cases by numerically obtaining the full crossover to the low temperature regime and predict distinctive transport signatures. We attribute the differences between both types of islands to a crucial distinction of charge-2e2e and charge-ee transfer in the conventional and topological case, respectively. In the conventional case, our results establish s-wave islands as a new platform to study the intermediate multichannel Kondo fixed point. In the topological setup the crossover temperature to non-Fermi liquid behavior is relatively high as it is proportional to level broadening and the transport results are not sensitive to channel coupling anisotropy, moving away from the charge degeneracy point or including a small Majorana hybridization, which makes our proposal experimentally feasible.Comment: 14 pages, 10 figure

    Numerical Study of Quantum Hall Bilayers at Total Filling νT=1\nu_T=1: A New Phase at Intermediate Layer Distances

    Full text link
    We study the phase diagram of quantum Hall bilayer systems with total filing νT=1/2+1/2\nu_T=1/2+1/2 of the lowest Landau level as a function of layer distances dd. Based on numerical exact diagonalization calculations, we obtain three distinct phases, including an exciton superfluid phase with spontaneous interlayer coherence at small dd, a composite Fermi liquid at large dd, and an intermediate phase for 1.1<d/lB<1.81.1<d/l_B<1.8 (lBl_B is the magnetic length). The transition from the exciton superfluid to the intermediate phase is identified by (i) a dramatic change in the Berry curvature of the ground state under twisted boundary conditions on the two layers; (ii) an energy level crossing of the first excited state. The transition from the intermediate phase to the composite Fermi liquid is identified by the vanishing of the exciton superfluid stiffness. Furthermore, from our finite-size study, the energy cost of transferring one electron between the layers shows an even-odd effect and possibly extrapolates to a finite value in the thermodynamic limit, indicating the enhanced intralayer correlation. Our identification of an intermediate phase and its distinctive features shed new light on the theoretical understanding of the quantum Hall bilayer system at total filling νT=1\nu_T=1.Comment: 5 pages, 3 figures (main text); 5 pages, 4 figures (supplementary material); to be published in PR

    Keeping Context In Mind: Automating Mobile App Access Control with User Interface Inspection

    Full text link
    Recent studies observe that app foreground is the most striking component that influences the access control decisions in mobile platform, as users tend to deny permission requests lacking visible evidence. However, none of the existing permission models provides a systematic approach that can automatically answer the question: Is the resource access indicated by app foreground? In this work, we present the design, implementation, and evaluation of COSMOS, a context-aware mediation system that bridges the semantic gap between foreground interaction and background access, in order to protect system integrity and user privacy. Specifically, COSMOS learns from a large set of apps with similar functionalities and user interfaces to construct generic models that detect the outliers at runtime. It can be further customized to satisfy specific user privacy preference by continuously evolving with user decisions. Experiments show that COSMOS achieves both high precision and high recall in detecting malicious requests. We also demonstrate the effectiveness of COSMOS in capturing specific user preferences using the decisions collected from 24 users and illustrate that COSMOS can be easily deployed on smartphones as a real-time guard with a very low performance overhead.Comment: Accepted for publication in IEEE INFOCOM'201

    Crossing w=−1w=-1 by a single scalar field coupling with matter and the observational constraints

    Full text link
    Motivated by Yang-Mills dark energy model, we propose a new model by introducing a logarithmic correction. we find that this model can avoid the coincidence problem naturally and gives an equation of state ww smoothly crossing -1 if an interaction between dark energy and dark matter exists. It has a stable tracker solution as well. To confront with observations based on the combined data of SNIa, BAO, CMB and Hubble parameter, we obtain the best fit values of the parameters with 1σ,2σ,3σ1\sigma, 2\sigma, 3\sigma errors for the noncoupled model: Ωm=0.276±0.008−0.015−0.022+0.016+0.024\Omega_m=0.276\pm0.008^{+0.016+0.024}_{-0.015-0.022}, h=0.699±0.003±0.006±0.008h=0.699\pm0.003\pm0.006\pm0.008, and for the coupled model with a decaying rate γ=0.2\gamma=0.2: Ωm=0.291±0.004−0.007−0.011+0.008+0.012\Omega_m=0.291\pm0.004^{+0.008+0.012}_{-0.007-0.011}, h=0.701±0.002±0.005±0.007h=0.701\pm0.002\pm0.005\pm0.007. In particular, it is found that the non-coupled model has a dynamic evolution almost undistinguishable to Λ\LambdaCDM at the late-time Universe.Comment: 12 pages, 3 figures, the published versio
    • …
    corecore